Any examples? I'm curious for examples of a nontrivial type that would catch lots of common programming errors where the proofs can be automated. I see lots of new dependently typed languages but not much interest in addressing the proof automation aspect.
You don't need type theory to verify program properties, people have been using first-order methods for decades to prove properties about programs. For example there was a line of work in ACL2 that verified a microprocessor implementation, as well as plenty of modern work using tools like SMT to automatically prove program properties, see Dafny, F* for language based approaches. Though there is plenty of language agnostic approaches as well. My colleagues at UW have a paper in this year's OSDI verifying crash consistency for a realistic file system with no manual proof.
“In computer science and mathematical logic, the satisfiability modulo theories (SMT) problem is a decision problem for logical formulas with respect to combinations of background theories expressed in classical first-order logic with equality. Examples of theories typically used in computer science are the theory of real numbers, the theory of integers, and the theories of various data structures such as lists, arrays, bit vectors and so on. SMT can be thought of as a form of the constraint satisfaction problem and thus a certain formalized approach to constraint programming.”
Yeah I think SMT is really the state-of-the-art right now in this area. Leo De Moura (one of the main authors of Z3) has been working on Lean for the past couple of years. There is a small group of us (5~) who have been working on a big release for the past couple of months. The goal is to bring the easy of use of SMT automation to type theory, so you can get both the ability to do induction and automation.
I'd love to give more concrete examples, but I'm slightly hampered by the fact the type system I want isn't actually implemented anywhere. I have a rough sketch of the design of the type system I want, and I've been looking for a computer scientist, logician or mathematician to help me polish the design and prove that it is, in fact, type safe. But I couldn't find anyone. :-|
I have no idea how to implement fresh unification variable generation (my type system is a superset of Damas-Milner, kind of like how the calculus of constructions is a superset of System F-omega) in Coq or Agda. Everywhere I've seen it implemented, it involves mutable state. So, “in principle”, I could fake it using something like the state monad, and plumbing around the collection of unification variables generated so far, but in practice reasoning about this seems like a pain.
You could take a look at Coquand (2002) “A formalised proof of the soundness and completeness of a simply typed lambda-calculus with explicit substitutions”.